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Sec’ion I. INTRODUCTION

This report documents the results of a study on inertial measarement
unit (IMU) self-alignment techniques for PERSHING II. The primary concern
is the fine alignmer: of a fixed base inertial platform where the base is
subjected to ground vibration and wind buffeting.

A thorough discussion will be made on the relationships among drifts
and misalignments of a platform. A gyrocompassing equation will be
derived. Sz.eral concepts useful for forming self-alignment procedures
will be “{scemsed ~'ith the help of developed analytics.

A new lea~t square regression algorithm, specially for IMU alignment,
“11 be devele 1. The superiority of this algorithm will be demonstrated
.rough theoretical analysis, experimentsl results, and hypothetical
examples.

The scope of this study can best be seen from the Table of Contents.
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Section 1I. IMU SELF-ALIGNMENT

An IMU can be aligned to an earth fixed coordinate system at most
latitudes on the earth's surface by using the information derived from
the output of the unit's sensors. This type alignment of an IMU is cal-
led leveling and gyrocompassing. Two fundamentally different approaches
are used to accomplish this: (1) the gimbaled platform of the IMU is
physically driven to align with the earth coordinates, and (2) the align-
ment is achieved analytically by determining the misalignments of platform
axes with respect to the earth cocrdinates. The second approach has the
advantage of faster gyrocompassing, but at the expense of a high speed
digital computer. Our present study is centered on the second approach, .
namely, the "analytic gyrocompassing'. Lo

The earth fixed coordinate system adopted in this study is shown in
Figure 1, vhere the three orthogonal axes are N, E, and A representing :
north, east, and azimuth, respectively. As a result of this choice of !
coordinates, the azinuth component of the earth rate is a negative quan-
tity as shown in Figure 2.

LAUNCH SITE
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Figure 1. Earth fixed coordinates.
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Figure 2. Earth rate components.

Figure 3 depicts the involvement of the analytic gyrocompassing. A
large amount of data, obtained from the outputs of platform seno>vs, is
reduced to a set of parameters through a chosen data reduction technique.
Then, the platform's azimuth is determined from these parameters using a

gyrocompassing equation.

It is obvious that better hardware allows more accurite gyrocompas=
sing. For a given hardware system, different gyrocompassing prucedures
can be formed by different combinations of basic concepts. Thus the
accuracy of gyrocompassing depends on several factors:

1) Platform hardware
2) Gyrocompassing procedure
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3) Gyrocompassing equation
4) Data reduction algorithm
5) Computer dependent errors.

LARGE ESTIMATED PLATFORM
AMOUNT PARAMETER AZIMUTH
RO p{ DATA VALUES > compuraTionj—ta
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PLATFORM | MEDUCTION
SENSORS 7 \ N\

\ \

VRN \

DATA COMPUTER GYROCOMPASSING
REDUCTION COMPUTATION FORMULA
ALQORITHM ALGORITHM

Figuve 3. Analytic gyrocompassing.

Figure 4 shows a general model of a platform with error sources
indicated. Fach solid line represents a hardware connection while each
dashed line represents the path of a sensed signal.

The “electronic and network" block can be implemented for various
- purposes such as maintaining the platform at a specific orientation,
compensating for errors, and improving the platform dynamics. Our pre-
sent purpose is to align the platform coordinates to the earth fixed
coordinates.
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Section 111. PLATFORM DRIFTS (1]

The analytic model needad for data reduction and the gyrocompassing
equation needed for azimuth determination are derived from the drift
characteristics of the platform. Therefore understanding the drifc char-
acteristics is a prerequisite to the development of gyrocompassing
techniques.

For a gimbaled platform, the platform axes are slaved to the gyros.
The time constants of platform servos are usually much smaller than the
gyrocompassing time (on the order of milliseconds versus minutes). Hence
the gyro drift contributes instaitaneously to the platform drift of the
same amount. Thus the terms "platform drift" and "gyro torquing rate"
become symonymous,

1. Kinematics of Platform Drift

Consider a platiorm which has been coarsely aligned to the
earth fixed coordinates. The deterministic torquing rate for each gyro
consists of the self-axis earth rate component, the cross-axis earth rate
component, and the gyro drift.

Let GN

6, = misalignment abnu% east axis

misalignment about north axis

E
eA = misalignment about azimuth axis
DN = north gyro drift

= east gyro drift

= azimuth gyro drift race

= earth rate
= latitude of launchsite

= -0 sin L = azimuth component of earth rate

Dg,

Dy

Q

L

QN = Q cos L = north component of earth rate
Y

KN = north gyro torquer scale factor error
XA

» azimuth gyro torquer scale factor error.
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The torquing rate for each gyro is obtained as follows:

for the north gyro,

én"“n* Dy - sin 8, - Q (1 - cos 6, cos 6.) + Ko o

where QA gin GE = cross-axis earth rate due to misalignment

QN(I - cos GA cos GE) = change of self-axis earth rate due to
misalignment

KN Q’N = rate due to torquer scale factor error;

for the east gyro,

GE = DE-i- QA sinON - Q’N sinGA

where Q

for the azimuth gyro,

.

GA = QA + DA + QN sin GE - A(1 - cos B, cos GE) + K,

N ATA

where QN sin GE = cross-axis earth rate due to misalignment

0,(1 - cos 8, cos 6_) = change of self-axis earth rate due to
A N
misalignment

KA J, = rate due to torquer scale factor errcr.

From Equations (1), (2), and (3) the non-nominal parts of the

(1)

(2)

N sin 9N - O.N sin 0 A= cross-axis earth rates due to misalignment;

3)

torquing rates for north, east, and azimuth gyros (or, equivalently, the

drifts for north, east, and azimuth axes of the platform) are,
respectively,

D, = DN - QA sinGE - QN(I - coseé cosGE)+KNQN
]
DE D% + QA sin GN - QN sin eA
] = - - o
Dy DA + :IN sin GE QA(I cos eN cos BE) + KA By .

(4)
(3

(6)

If the misalignment GN, GE, and 9A are sufficiently small, small

angle approximations for sine and cosine functions can be used. Under
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this condition, Equations (4), (5), and (6) reduce to

Dy = Dy = &y 0+ Ky Oy N
- 0,6, + 9, 0 (8)
DA=DA+QN6E+KNQA . 9

Monitoring values of calibrated gyro torquing currents provide a way of
determining the platform drifts.

2, Time Functions of Drifts

Equations (7), (8), and (9) show that the drifts along three
platform axes are coupled together by the misalignments eu, GE, and 6 A’

Understanding this coupling effect is important to accurate gyrocompassing.

It is reasonable to assume that during the period of gyrocompassing,
e A the azimuth misalignment is constant. With this in mind, Equations

(7) and (8) can be further developed into

]
Dy = Dy~ SO T Ky Yy

t
L
=DN-QA6E0+ IDE('r)d'r +KNQN
0

R b
i Wr,‘,j‘}‘h,ﬂww i nw,‘lﬁum " R

4 o ] .
Dy = @ g+ Ky Y - &y f Dg(r)de (10)
\ — / 0
< '
3 Dno
; ; and
) ‘2 p -
L Di = Dy - G 0, + 9, 6
g - R 6, + 9 (00 + fD(‘t)d'r
E =Dy -0, 0, + 8, 0,0+, ] Dy(r)dr . (1)
< ~-—
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By defining
T Oy Oat ) Oy =Dg - O,
[ ]
Do ™ Dy = % Ogo + Py

vhich represent the initial values of the drift for east and north axes,
.the two drift equations become

> (12)

nr; + 9, f Dé(‘t)d'r = Dr'«o (13)
t

né - a, f D;‘('t)d'r = ”;r.o . (14)
0

The time functions D! (t) and D! (t) can be solved from Equations (13)

and (14) using transform method Taking the Laplace transform of both
equations,

Q
Di(8) + 2 Di(s) = —‘ﬂ (15)
' ' 1'30
Di(s) - 2 Di(s) = = . (16)

] ]
Solving fqr DN(s) and DE(s) yields

Dy (s) -2 - p] —-P-A—- (17)
NO 2 92 EO 2+ nz
A S T
)
D) = DT Tt TT, 7 - (18
A A

By taking the inverse Laplace transform of Equations (17) and (18), the
corresponding time functions are, respectively,

] L] L
DN(t:) DNO cos ﬂAt - DEO sin QAt (19)
¥ = \j -
DE(t) DE cos QAt + DNO sin QAt . (20)
1l
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In matrix form,

] ]
DN(t) cos QAt - sin QAt DNo
= (21)
] ]
DE(t) sin QAt cos ﬂAt DEo

which shows that the vector drift at any time is a rotation of angle Q t
from its initial vector drift.

. ——

For small value of Q,t,

A
= Qﬁ t2
3 cos {,t = 1--=3
. (22)
. sin QAt = QAt ,

Then Equations (17) and (18) can be approximated by

l ] t Q: t2 ’
Dg(t) = Dy = Dpg Bt - Dy =5 (23) i
ai ¢2
D(t)-D +D qQt-D ~S=—— (24)

EO NO A E0O 2

1f the second order terms are negligible, Equations (23) and (24) can
further be approximated by

l

Dy(t) = Dy = Dpy 9t (25)
1}

Dg(t) = Dpo + Do 2t . (26)

3. Time Functions of Misalignments

With the help of Equations (19) and (20), the misalignments
en(:) and GE(t) can be determined as follows:

12




=

t
0

l
ot I (D' cos 2,7 = Do sin QAT)d'r
D. D'
NO EO
9N0+ a sin QAt:-i- 2 cos QAt

A A

D'

-2 o
A

Gz(t) = em + ] Dé(‘l')d‘l’

0

= 6 + I (D! cos T+ DNO sin Q,7)dv

D'
EO NO
=0 4 =~ gin D, t « == co8 O, t
EO QA A QA A
D'
+ _..5‘0 ) -
A
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Section IV. GYROCOMPASSING EQUATION

Gyrocompassing, the determination of azimuth misalignment, requires
the knowledge of drifts and misalignments along the north and east plat-
form axes. A gyrocompassing equation and its accuracy are discussed here.

1.  The Equation

By solving Equation (8) for 6 A(t:), the azimuth misalignment at
any time t is obtained as

D, - D!\(t) + Q, 6.(t)
eA(t) = —E-L_‘.E.r AN . (29)

Substituting the details of né(c) and 0,(t) from Equations (18) and (25)

into Equation (29), all sine and cosine terms cancel, The result is the
"gyrocompassing equation'" sought,

Dp = Dpy + &y Oy

o) =

Intuitively, it can also be said that Equation (30) comes directly
from Equation (29) since

. (30)

D, =D +Q, 0
8,(t) = 6 __E__"EO" *A’NO .

AO QN

2.  Gyrocompassing Accuracy

The ultimate gyrocompassing accuracy is limited by the follow-
ing uncertainties:

ADp
1]
ol

= East gyro drift uncertainty
= Uncertainty in platform drift about its east axis

M. . = Uncertainty in the initial platform misalignment about

NO its north axis,

From Equation (30) the uncertainty in gyrocompassing is obtained as

. (31)

PYROA

Tk Sl

3
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=
3




Since the sign of ea<l, individuel uncertainty is not known, an upper
bound of the gyrocompassing error is given by
L] .
AP lavg - avg| + 19y 80y o2
A SIN *

1
In Equation (32), Ae and A0 m are in radians while ADE, ADE, Qs and QN
have the same unit. If AeA and A6, ko are in arcseconds, Equation (32)
should be replaced by

1
|ang - avg|

%

IAGAI £ 206,280 + |86y, tan L] (33)

where L is the launchsite latitude.
Consider an example where
L = 45 degrees
ADE - ADE = 0,003 deg/hr

AGNO

= 2 arcsec .
Since Q = 15 degrees/hour,

QNS Q cos L = 10,61

tanL =1 .
Equation (33) gives

0.003

10,61 + 2 =583+ 2= 60.3 arcsec .

lae, | = |206,280 x 25262

Notice that, in this example, the platform east axis drift uncertainty
contributes nost of the error in gyrocompassing.
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Section V. CONCEPTS FOR SELF-ALIGNMENT

This section presents a discussion of several useful concepts
vhich can be chosen to form different IMU self-aligmment procedures,

1.  Gyro Drift Determination

Detcrmination of gyro drifts using the information within the
‘atform system is also called "autobiasing," Here we shall be con-
.ned with drifts about north and east axes, There are two different
wethods of autobiasing gyros, namely, the 'closed=loop method" and the
"open=loop method," The choice between the two depends on the relative
uncertainty between the gyro torquer scale factor error and the acceler-
ometer scale factor error,

Referring to Figure 4, the platform alignment system consists of
two Schuler loops, For the closed=loop method, both Schuler loops are
closed and gyros are torqued at the rates given by Equations (1), (2),
and (3). Under the fine alignment condition, platform is sufficiently
level such that small angle approximations for trigonometric functions
are satisfactory, Therefore Equations (7) and (8) give the non-nominal
torquing rate for the north and east gyros, In general, there are
biases in accelerometers, so the terms -QAQE and QA?N may not be small,

However, in all practical cases, the biases are known. Therefore
their effect on platform drift is known, Thus it can be said that the

diffeence between -QAQE and the corresponding accelerometer bias effect

is small, and between QA?N
effect is also small, Under this condition, Equations (7) and (8) are
further reduced to

and its corresponding accelerometer bias

D;q = Dy + KNQN (34)
Dr'-: = Dp = QNGA . (35)

The quantities D& and Dé are obtained by measuring the torquing
currents of north and east gyros. Assuming that QN is known, the north
gyro drift Dy can be accurately determined if KN’ the torquer scale
factor error, is known. However, the uncertainty in QNGA is, in general,
so large that there is no way to accurately determine the east gyro

]
drift DE from DE'

Often the knowledge of KN is not available to the degree of pre-

cision desired, Under this condition, accurate and rapid determination
of D, from the closed-loop information is difficult,
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The effect of uncertainty in north gyro torquer scale factor error
can be eliminated entirely by not torquing the north axis of the plate
form physically., Instead, an analytically torqued north axis is main-
tained in the computer by on~line computation, This method is called
"zero-torquing measurement," Zero-torquing is accomplished by opening
Schuler loops at places indicated in Figure 4, Therefore the method

is an "open-loop method." Under this condition, platform level is not
maintained, so accelerometers receive larger inputs. Thus the uncer-
tainty in the accelerometer's scale factor error becomes more important,

In the open=loop method, measurements are taken at outputs of both

accelerometers, From the measurements, D& and Dé are determined,

Because of zero-torquing, KN plays no part in drift determination, so
Equation (34) becomes

DL =Dy » (36

which is an sttractive way to determine DN' However, Dé is still given
by Equation (35) where separation of DE from -QNOA is difficult,

To conclude, it is seen that whether the closed-loop method or
open-loop method is used to determine gyro drifts, only the north gyro
drift can be accurately determined, Reference 1 contains several
numerical cscamples to fllustrate this phenomenon, The technique of
determining D& and Dé from the measurements for the open~loop method

will be discussed in detail in Sections VI and VII,

2.  Two-Position Gyrocompassing

Recall from Equation (30) that an accurate gyrocompassing can

be achieved only if an accurate determination of the east gyro drift DE

can be obtained, Since accurate drift determination can be made only
for north gyro, a two~position scheme can be devised to take this advan-
tage, The scheme msy consist of the following steps:

a) Autuobiasing the north gyro to determine DN

b) Slewing the platform approximately 90 degrees so that
the north gyro becomes an east gyro, and the original east gyro becomes
a south gyro

. ¢) Gyrocompassing is performed with the present cast gyro
whose drift has been accurately determined, enabling an accurate azimuth
alignment,
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After slewing, the south gyro is in & favorable position for accurate
drift determination, The autobiased south gyro will then be ready for

in-flight navigation.

3.  Off-Set Seif-Alignment

It is possible to achieve platform self-alignment with the
platform coarsely leveled but without requiring that the platform axes
be physically coarsely aligned to north and east, Instead, the north
and east, which are obtained from an analytic coarse alignment, are
analytically maintained in the computer, The fine alignment is then
achieved by determining the misalignments between the computer north
and east and the true north and east,

Referring to Figure 5, 0 denotes tte off-set of the platform level
coordinates from the computer's level coordinates, and GA is the azimuth

misalignment to be determined, Under the off-set condition, the followe
ing quantities are first obtained:

VN .ad VE ~ Velocities along the platform's north and east axes,
P P obtaincd by integrating the outputs of north and
east accelerometers

Q == The off-set angle, obtained by a certain coarse alignment
procedure, say, BATH,

Next, the velocities along the computer north and east axes are com=
puted from

V., =V cos =V, sinQ
% M Ep

. 37
V., =V, cosQ + vN sin &
C P P

Finally, a fine aligmment technique can be chosen for performing the
fine alignment between the computer axes and the earth coordinates.

During the fine alignment, platform can either be torqued at earth
rate, or be torqued about the azimuth axis at the azimuth component of
the earth rate, The merit of not torquing the level axes is to avoid
the torquer scale factor uncertainties, which have been discussed, The
information of the torqued coordinates is already in the computer since
this information is needed to torque the platform in the first place,
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E, N~ EARTH EAST AND NORTH
Ec, Nc ~ COMPUTER EAST AND NORTH

Ep, Np — PLATFORM EAST AND NORTH

ol

Figure 5, Off-set self-alignment, 5

4.  Large Angle Self-Alignment

In the case of "large angle self-aligmment,” the platform is
coarsely leveled so the small angle approximations for QN and GE are
valid, The azimuth axis is torqued at QA’ the azimuth component of
earth rate, But the azimuth misalignment BA is not small enough to

allow the use of small angle approximation.

it 0l 1 ot R

Under this condition, a good approximation for platform drift camn
be obtained from Equations (1) and (2) as

' -
Dy = Dy QAPE + Q. cos 8 (38)

A

A A A S O P
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DE - DE + QA?N QN sin BA . (39)

Equations (38) and (39) can be solved for cos 6 A and sin GA, respectively,
Thus tan GA can also be obtained, During the self-alignment period,
the variation in azZmuth misalignment is small, so it is assumed that

6A - er' The resulting gyrocompassing equation is therefore given by
- Dt
oy m oy -t AR BTHY g
a%k0 = Oy = Do)

The ambiguity of double values can be resolved by solving GA from

Equation (39) also, and compare its sign to that determined by Equation
(40), The determination of eNO’ GEO’ D&O’ and DEO will be discussed

in Sections VI and VII,

One may wonder why GA is not determined directly from either

Equation (38) or (39) by taking the inverse of cosine or sine function,
The reason ic that tangent function possesses steeper slopes, enabling
a more accurate determination of GA.

Notice that the large azimuth angles for which this method is
intended cannot be arbitrarily large, They must be within the limits
that Lquations (1) and (2) are valid,

5. A Typicai Seif-Alignment Procedure

By combining a few of the aforementioned concepts, a typical
self-alignment procedure can be developed, As an example we may have
a8 "two=-position off=~set zero-torquing sclf-alignment," Figure 6 shows
the coordinates involved in this method. In Figure 6 N and E are
earth's north and east; Nes Eos and sc are the north, east, and south

known to the computer; and Ny and EP are north and east of the platform,

The 90~-degree slewing for the second position is indicated by dashed
arcs, The slewing is not required to be precise,

The required alignment steps for this example can best be
described with the help of an activity flow diagram shown in Figure 7,
If the time for achieving BATH is shorter than a coarse alignment
slewing, the total alignment time can be reduced when the off=-set
self-alignment concept is employed, This is because the physical
coarse alignment t.les time to achieve, while the off-set technique
90-degrees slewing can be very rapid without worrying about its
accuracy.
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E, N — EARTH EAST AND NORTH
EC, Ng. Sc — COMPUTER EAST, NORTH AND SOUTH
Ep. Np ~ PLATFORM EAST AND NORTH

Figure 6, Coordinates for a 2-position off-set self-alignment,
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PLATFORM IN ANY OFFSET POSITION

Y

[EST!MATE OFFSET «BY "BATH"”

'

— OPEN LEVELING LOOPS AT ACC'MTR OUTPUTS.
— LEVEL AXES NOT TGRQUED.
— AZIMUTH AXIS TORQUED AT Q2,.

— MEASURE DELTA VELOCITY PULSES FROM
ACC'MTR OUTPUTS.

|

COMPENSATE FOR ALL KNOWN BIAS AND DRIFTS @l
INTRODUCED BY THE PLATFORM AND ELECTRONICS
WHICH INCLUDE:
GYRO: BIAS, SCALE FACTCR, MASS UNBALANCE.
ACC'MTR: BIAS, SCALE FACTOR, ORTHOGONALITY
SYMMETHY.

Y

COMPUTE AV, AND AVE FROM THE COMEPNSATED
AV AND AV BY COORDINATE TRANSFORMATION

FIRST
POSITION
(AUTOBIASING)

EQUATION.
Y

LEAST-SQUARE DATA REDUCTION TO GET (Dy)4.

¥

SLEW PLATFORM ABOUT SO deg.

OBTAIN VALUE OF NEW o BY “BA'in.”

v

REPEAT FINE ALIGNMENT STEPS A, B, AND C. [y
Z LEAST-SQUARE DAT2. REDUCTION TO GET Wglp. Bgly | SosrioN
— COMPUTE AZIMUTH MISALIGNMENT USING (ALIGNMENT)
(D)5 — (Dj)q
«2E27 NN L (o) aan L.
P aaar-yvery N2 ‘'
— UPDATE ALIGNMENT.
— TORQUE OUT MISALIGNMENTS.
—"READY FOR LAUNCH.
— CLOSE LEVELING LOOPS AT THE

END OF ALIGNMENT PROCEDURE.

Figure 7. Two=position off-set self-alignment,
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Section VI. STATE ESTIMATION FOR SELF-ALIGNMENT

Platform Alignment State Vector

Platform leveling and gyrocompassing amount to the determina-

tion of misalignments GN, GE, and 6 A vhich, in turn, require the know-

ledge of Dt'i and Dé. A preferred procedure is to first determine e eE,
Dt'i’ and Dé from the platform's sensor outputs. The azimuth 6 A can then

be determined using the gyrocompassing Equation (30). In this procedure
the desired self=-aligmment state v=ctor x consists of four elemenus:
~ -

Ox

0
x = f . (40)
Dy
D'
| E

2. Zero-Torquing Measurement Equation

Consider the case of zrro-torquing fine alignment where the
state vector is determined from the output data of accelerometers, For
a sufficiently short fine aligmment time the equations for misalignments,
Equations (27) and (28), can be approximated by their Taylor series
expansion up to the second power of t; i.e.,

1 2
= t . L
On(£) = Oyg *+ Dot = 3 Dgo Ut (41)
1 2
- ' Y
6p(t) = 8, + DLt + 2Dt | (42)

Notice that, since the north gyro is not torqued, the drift term D&o

includes the north component of the earth rate, The drifts and mis-
alignments transform into accelerations via tilts of north and east
accelerometers, giving

ay = -g X sin 6, = -gf (43)

a, =g X sin GN o geN (44)
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where g 18 the grevitational acceleration, Substituting Equations (41)
and (42) into Equations (43) and (44) gives

- - - & 2
ay = ~89gg = 8Dgot = 3 Dy Gyt (45)
= L) - a ] 2
a, = g0+ 8Dgot = 3 Deo Wt - (46)

Integrating Equations (45) and (46) from 0 to t gives the changes of
velocities during that period as

B - - & 2 - 8 pr 3
Vn(E) = g8t = 3 Dpot™ = § Dpy 2t (47)
V.(t) =go t+8&p ¢2 B g3 (48)
E 80" T 2 PNo 6 EO “A° °

Let U = [VN, VE]t be the measurement vector, the matrix form of
Equations (47) and (48) is

%)
NO
- -1 3 1 2
Vy(t) 0 -gt e Ot 5t 6
= EO 49
4 8 g +3 ' - (49
VE(t) gt o0 2t ~Et DRo
]

Equations (47) and (48), or Equation (49) are the measurement equation
desired,

Grouping Equations (19), (20), (27), and (28) together, the state
vector at any time is related to its initial value by

B sin Q,t cos Q.t = 1]
o] |1 o = A ,f N
A A
o o 1 1 « cos QA.. sin jé_ o
E QA QA EO
- . (50)

[ - t

DN 0 0 cos QAt sin QAt DNO

] ]

DI-: 0 0 sin QAt cos QAt 1 l_DEO
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Equations (49) and (50) provide a way for determining the desired state
vector from the integrated measurement data,

It may be asked why the state vector is not determined using

Equations (45) and (46) as measurement equations,

The answer is that

the integration reduces errors caused by the quantization effect of the

accelerometer output,

In practice, discrete measurements are made at time t = 1k for

k=1~N, and T is the sampling period.

time into Equations (49) and (50) gives

- -E 33 _g.22
VN(k) 0 g7k 6 QAT k 2 ™k
) B 22 _Bg .33
VE(k) gk © 2 Tk 6 QAT k
and
. - i sin 2,7k  cos Q,Tk - 1]
GN(k) 1 0 a a
A A
1 - cos QATk sia QATk
GE(k) 01 o R
- A A
L -
DN(k) 00 cos QATk sin QATk
1
_DE(k)_ 00 sin QA'tk cos ﬂA‘rk |

If the total measurement time is sufficiently small,

sin Q,7k = Q,7k

A A
?
cos QA'rk 1

then an approximation for Equation (52) is

6, (k)]
aE(k)
PN k)
Dé(k)

3 ol

-10 Tk

01 0
0 0 1
0 0 Q Aﬂ‘
e
25
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Tk 930
=0 A’tk D&o
1 Déo

eNO

%0

]
Dyo

 §
Dgo

NO

EO

| ]
Dyo

D'

EO

Substituting the discrete

(51)

.« (52)

(53)

(54)
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3.  Estimation Techniques
When the enviromment is ideal, where disturbance and noise
are not present, measurement of VN(t) and VE(t) at two different values

of t is sufficient for determining the state vector. In reality, the
measurements are contaminated by noise due to ground vibration, wind
buffeting, instrument noise, and other random disturbances. Under this
condition, accurate determination of the state vector demands the use
of a large number of redundant measurements in conjunction with a
statistical estimation technique.

Two well known approaches of statistical estimation techniques
applicable to platform self-aligmment are the least square regression
approach and the Kalman filtering approach. A comparison of the two
approaches is given as follows:

a) Least Square Regression - This approach does not make use of
statistical properties of the noise, if available. The associated data
reduction process can be made either sequential or batch., If the
desired number of state estimations is much less than the number of
measurements, the least square regression algorithm requires less com-
puter time and smaller computer memory as compared to Kalman filtering

[4l.

b) Kalwman Filtering [5] - The Kalman filtering algorithm has a
built-in provision for taking advantage of known second order statistics.
The associated data reduction process is sequential, which generates an
estimate of the state from each measurement.

We choose th: least square regression approach for the platform
self-alignment. The choice is based on two facts: first, knowledge
of the statistics of the noise is not good enough to enjoy the merit of
Kalman filtering; and secondly, the required number of state estimations
is far less than the number of measurements so least square regression
approach is superior in the required computer time and memory.

In Section VII a new least square regression algorithm, tailored to
our platform self-alignment application, is presented in detail.
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Section Vil. A NEW LEAST SQUARE ALGORITHM

1. Measursment Equations

Least square regression method requires a special form for

measurement equations. Rearranging Equation (51) and adding measurement
noise to it, we get

V (k) = Ak + Al ANk3 + ny(i) (55)
Ve (k) = Ak + AXE+ AL + () (56)
where nN(k) and ng(k) are additive noise, k = 1 ~ N, and

Ay = 80"

A, = -% Dl'm'r2 (57)

Ay ==6 Do T

A, = g0

3 NO®

=3 2
y A = 2 Dot . (58)

-..K ' 3
Ag == Dgo T

The problem becomes the determination of Al’ Az, A., and AA from a
large set of redundant measurements VN(k) and VE(k). A.N and AE are not

needed because they differ from At. and Az, respectively, only by a
known constant multiplier,

2.  The Usual Lesst Square Algorithm [6,7,8]

Measurement Equations (55) and (56) are in the form of three-
term third-order polynomials in k. A conventional set of least square
regression formulas are available in textbooks in statistical mathematics

for determining the coefficients. Applying conventional formulas to
our problem, the coefficients are determined from
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= j - ~
Y z 1 v ) ju1~3 (61)
k=1
N
= j = ~
z, 2 K V) 3e=1~3 (62)
k=1
¢, ¢, C,
c=|c, ¢, ¢ (63)
¢, C5 G
and N
Citzki i=2~6 . (64)
k=1

These formulas have been used for platform self-alignment as well
as their applications and are applicable to any three-term third-order
polynomial. The algorithm can be written either for batch processing
or for sequential processing,

3. A New Least Square Algorithm
Examining Equations (55) through (58), it is seen that they
can be expressed in the following equivalent form:

2 3
VN(k) - Alk + Azk + uA,‘k + u“(k) (65)

x




V() = Ak + AkY - unk® + 0 (k) (66)

where
U= - —%‘- . (67)

Notice that some of the coefficients are correlated deterministically.

Can this property be employed to improve the estimation accuracy? The
answer is in the affirmative,

Let us study a more general case

- 2 3
Ve = Ak + BK” + uDk” + n

3 (68)

2
| ] = ]
VK Ck + Dk~ + vBk +nK

vhere VK and Vl'( are measurements made at sampling instants k = 1 ~ N,

and A, B, C, and D are parameters to be estimated, A cost function is
chosen as follows:

N
2 3.2
1-2 Ve = (Ak + BK” + ubk’)
k=1

N
+ z {"fc - (Ck + Dk% - uBk3)} . (69)
k=1

The cost function is to be minimized by an op:imum selection of A, B,
C, and D, Setting

oI oI 9JI _d1
gx“&_-ﬁ.ﬁ.o . (70)

a set of four algebraic equations are obtained which can be combined into
a single matrix equation:

Wl A
W B
2l g (71)
W3 C
-wad 3 DJ
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0 uC, A
+VC, VC, (v + u)C
6 4 5 2) i
4 CZ C3 %
_uc4 (u+ V)G C3 C, + chJ -
i
ci-Zk 1=2~6 (73
2 ;
‘ W, = 2 KVys W, = z (Vg + vkV}) :
12 ! k=1 k=1
=3 i . (74)
: N N
| W, z K, W, z kP vy + ukv)
! k=1 k=1
; The estimate of A, B, C, and D are obtained by inverting the G matrix, : ;
; giving
A ['wl
B W
=c 2] . (75)
c Wy
..D.J ..w-'u

Applying this result to our platform model, given by Equations (65)
through (67), results in

po -~ r- -
LY A
W A
21| 2 (76)
W Ay
.W4J .A44




c an

0 -uc4 02 3
c
uc, 0 3 C4*+uCy
N
ci-z K} i1=2, 3,4, and 6 (78)
kn1
N N
2
W, = 2 W), W, = 2 KP[Vg(k) = ukV, ()]
k1 k=1
« (79)
N N
2
W, = 2 We(k), W, = z K[V (k) + ukV(K)]
k=1 k=1
Values of Ai’ i =1~ 4, are given by
.- o
A W
A W
2| . g7l] 2 . (80)
Aq W,
K ¥4

Notice that the measurements VN(k) and VE(R) contribute to the estima-
tion via the computation of Wi, i=1~4, Also, the property of the

platform kinematics together with the choice of cost function result

in the absence of C5

in the computation.

The estimate for the initial state vector is obtained from Ai’
i = 1~ 4, using Equations (57) and (58).
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-2A2
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Deo 2
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Example 1
Consider a simple case having a single measurement equation
2 3
VK-Ak+Bk + Bk +nk . (82)

Let A=4, B= 2, and k= i ~ 10. The values of VK are generated by
adding noise n, to the value of polynomial at each k. The values of ny
are taken from a table of normall: distributed random numbers, having
zero mean and a variance of one. These values are listed in Table 1.

TABLE 1, MEASUREMENT DATA FOR EXAMPLE 1

K e %
1 | -1.276 6,724
2 | -0.318 31,628
3 | -1.377 82,623
4 2,33 178,334
5 | -1.136 318,864
6 0,414 528,414
7 | -0.494 811,506
8 1.048 | 1185,048
9 0.347 | 1656.347
10 0.637 | 2240.637

Both new and usual least square algorithms are used to estimate A
and B from the data VK’ k=1~ 10, The results are shown in Table 2,

listing values of estimates and their percentage error as compared to
true values, It is apparent that the new algorithm produces much more
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accurate estimates,
fewer measurements are used,

TABLE 2,

RESULTS FOR EXAMPLE 1

A= 4 B=2
Usual Algorithm 3.67969 2,09863
N=10 8% 5%
New Algorithm 3.95581 2,00111
N=10 1% 0.05%
New Algoritim 3.87604 2,00359
N =5, (1st 5) 3.1% G.17%
New Algorithm 4,00342 2.00059
N= 5, (2nd 5) 0.086% 0.025%

for this example,

Example 2

The new algorithm gives better resulcs even if
Appendix A contains the computer program

Consider the following case of two measurement equations:

2 3
VK Ak + Bk™ + Dk -l-nK

. 2 3 . . (83)
VK'Ck+Dk + Bk +nK

Let A=4,B=2,C=3,D=1, and k = 1 ~ 10. The values ofVKand
Vl'( are generated in a mammer similar to that for Example 1, Table 3
lists the measurement data,

TABLE 3, MEASUREMENT DATA FOR EXAMPLE 2

K g g Yk k
1 -1,276 -1,218 5,724 4,782
2 -0,318 0,799 23,682 25,201
3 -1,377 -1,257 55,623 70.743
4 2,334 04337 114,334 155.663
5 -1.136 0,642 193.864 290,642
6 0,414 =-0,011 312,414 485,989
7 ~0,494 0.364 468,506 756,364
8 1.048 0,037 673,048 1112,034
9 04347 2,816 927,347 1568.816
10 0,637 0,563 1240,6°7 2130, 563
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Again, both new and usual least square algorithms are employed
to estimate A, B, C, and D, The results are listed in Table 4, with
the percentage error of each estimate estimated. Again, the new
algorithm gives much better results, Appendix B presents the computer
program for this example,

TABLE 4, RESULTS FOR EXAMPLE 2

A=4 B=2 C=3 D=1
Usual 3.561133 2,08984 2,07031 1.2207
Algorithm 9.7% b4o4% 31.0% 22.7%
New 3.95093 2,00272 2,88883 1,00099
Alsotithm 1.2% 0.14% 30n 0.1%

4. Sensitivity Consideration

It is expected that the new algorithm is less sensitive, as
compared to the usual algorithm, with respect to erratic measurement
data and to computaticn errors, The rationale is that the coupled
parameters have a tendency to hold each other at their nominal values,
Example 3 will show this effect,

Example 3

This example uses the same measurement model, same measurement
data, and same computer programs as those used for Example 2, To
observe the effect of erratic measurement data on estimates, the
measurement V(10) is changed by 17 and a set of new estimate for A,

B, C, and D is made using new and usual algorithms, To observe the
effect of computation error on estimates, the value of V(10) is restored
to its original value and the value of 06 is changed by 0,01%. Another

set of estimates are made using both algorithms, All estimates are
1isted in Table 5, Values of sensitivity in the table are calculated
using the formula

S = New estimate ~ Nominal estimate (84)
Nominal estimate *

The result confirms the expectation that new algorithm has lower

sensitivity.

Example 4

In this example a real world platform system is considered, The
platform is of the class proposed for PERSHING II application, Twelve
hundred and fifty pairs of measurement data were recorded at outputs
of north and east accelerometers., The total sampling time is 240 seconds.
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TABLE 5,

SENSITIVITY COMPARISON FOR EXAMPLE 3

1% Change 0.,01% Change
Condition Nominal in V(10) in 06
Algorithm
Used Usual New Usual New Usual New
A=4 A | 3.61133 3.95093 | 5.,41016 | 3.38013 ! 2,64648 | 3.99084
S — — 49,8% =14,4% =26.7% 1.0%
B =2 B | 2.08984 | 2,00272 | 1.36035 { 2,00166 | 2.41113 | 2.00152
S — —— 34,9% =0,05% 15.4% -0,06%
C =3 ¢ | 2.07031 | 2.88883 | 2,07031 | 2.85061 | 0.13281 | 2.97167
S — — 0,07 -1,3% -93,.6% 2,87%
D=1 D | 1.22070 | 1.00099 | 1.22070 | 1.01469 | 1.86183 | 1.00053
] — — 0.0% 1.4% 52,5% -0,05%

K - Estimate of A
S = Sensitivity

The quantities to be estimated are misalignmments and platform drifts,

New and usual least square algorithms are used for data reduction, The
former consists of Equations (77) through (81) while the latter consists
of Equations (59) through (64) and (87),.

are shown in Table 6.

The results of data reduction

To explore the sensitivity of both algorithms

with respect to computation errors, a poor matrix inversion subroutine

is used,

algorithms produce reasonable results,
ordinary precision, the result from new algorithm is not reasonable,
But the result from the

usual algorithm is ridiculous regardless of the platform considered,
The results show the superiority of the new algorithm.

knowing the quality of the platform used,

TABLE 6,

RESULT FOR EXAMPLE 4

When computations are done with double precision, both
When computations are done with

Ordinary Precision

Double Precision

New Algorithm

Usual Alg

orithm

New Algorithm

Usual Algorithm

9N0 1162,8 arcsec

eEO 695.6 arcsec

Dyo | 0.275 deg/hr

Dgo | -0.0017 deg/hr

4,736 x 10

2,599 X 10°

5.362 x 10°

2.824 X 10°

26

arcsec
6

arcsec
6 deg/hr

6 deg/hr

-10,55 arcsec
691,6 arcsec

13,306 deg/hr
0.0775 deg/hr

=6,294 arcsec
693,0 arcsec
13,1¢ deg/hr

0.038 deg/hr
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The only disappointment in this example is that the exact values

of misalignments and drifts were not available at the time of experiment,
therefore a precise comparison of two results could not be made, To
partially overcome this difficulty, theoretical error analyses are
developed in Section VIII, These analyses will help to evaluate the
quality of algorithms, Appendix C presents two computer programs used
in this example,
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Section Viil. THEORETICAL ERROR ANALYSES

The approach of theoretical error analyses used here is to develop
analytical relationships relating the standard deviation of estimation

error to the standard deviation of the noise, The analyses are done for
new and usual least square algorithms,

1.  Analysis for New Algorithm

Recall Equation (80) and define

H=gl (85)
then
A Wy
!
A W
Zlay| 2 (86)
Aq Wy
A W
| 4 ] L 4]

H is a 4 X 4 matrix whose ij-element will be denoted by hi j° Expanding

the first row of Equation (86) and using the relationships in Equation
79, Al can be expressed as

4
b= 2 ey ¥
j=1

= hy, Z KV (k) +hy, !z K k) = u g k3vE(k)}
k tk

Y3 3
+ h13 z kVE(k) + hla{z ¥ VE(k) +u z k VN(k)} . (87)
k k k

The ercor in A1 is caused by errors in VN(k) and VE(k) which are denoted
by eN(k) and eE(k), respectively. Let e

1 represent the error of Al’
then from Equation (87) we can get
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L= by 2 key (k) + hu{ z Key(l) = u 5 kBeE(k)}
. K K

+hy, z keg (k) + h14{2 kZeE(k) +u 2 kseN(k)}
” K

K
- z {(hukarh K2 +h, 3)N(k)
K
(h13k + hmkz - huuka)ez(k)} (88)

which expresses the error in A1 in terms of source errors.
Assume the following statistical properties for source errors:
a) Zero mean, i.e,,
< eN(k) >= < eE(k) >=0 (89)
where "< >" denotes ensemble average
b) Uncorrelated between axes and from time to time, i.e.,

< eN(i)eN(j) >= < eB(i)eE(j) >=0 12] (90)

< eN(i.)eE(j) >=0 all 1,j (91)
¢) Equal and stationary variance, i.e,,

< eﬁ‘(k) >=< eé(k) >= 0:, 4 constant, (92)

Taking the ensemble average over the square of Equation (88), applying
previously mentioned error properties, and rearranging terms, we can
obtain the error variance of A1 as follows:

2
2 2 3
oAl a 2{ ux-i-hlk 4+ uh k)

3
+ (h13k + by, K2 ) } . (93)

We shall digress for a moment to deri.ve a number of relationships
which will help to simplify the final expression., Substituting details
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of VN(k) and VE(k) as given in Equations (65) and (66) into Equation
(67) and regrouping terms,

2
A=A z k(huk bk
K

3
b vy 1)

2 2 3 3 3
+ 2 X (hnk + 1y k0 + uhy k ) - uk (hmk + hy kP - bk )
k

2 3
+ A, z k(h13k + hy k- vk )
m

2 2 3 3 2 3
+a, 2 K (hnk + by K - bk ) + uk (huk + 1k + uhy K )
K
(94)

comparing both sides of Equation (94) shows that the coefficient of A1

should be 1, and those of AZ’ 3 and A.4 should be zero, Therefore we
get the relationships
1

z k(h k + hyk +uh14k1=1

.2 2 3 2 NGl

z (k (hnk-i-hlzs + uh k) uk(h13k+hmk - uhy K )} =0

K

zkh K+ h k* - uh k3)=o 5(95)
ety 12X

k

2 2 3\, .3 2 . N\
2 {k (hnk + k- uhy ok )4- ke (huk + by k® F kg ik )} 0, .
k

Return to our analysis of error variance and apply the relation-
ships of Equation (95) to Eyuaticn (93). The result is a very neat

expression,
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vwhere n; is the normalized error variance for Al. The normalizatior is
done with respect to the variance of source error,

In the similar manner, the normalized error variances for Az, A3, :
and A, are obtained as :

4 2
g
2 A
277 "My 6n
e
o2
13 o2 33
e
o2
2alely (99)
=2 "Ry o
e

Notice that values of hii’ i=1~4, depend solely on N, the
number of measurements, and u, the correlation parameter., Therefore,
normalized error variances qi, N =1 ~ 4, are independent of measure~
ment data, but depend on the kinematics of the platform misaligiment.

By taking the square roots of Equations (96) through (99),

equations for normalized standard deviation of estimates are obtained
as

T s =1~0b , (100)
another very neat expression,

Equation (100) is very useful in several ways. For a given set
of error standard deviations of the source and the number of measure~
ments, it can be used to estimate the error standard deviations of
estimates, Hcwcver, for a given set of source error standard deviations
and a set of prescribed standard deviations for estimates, it can be
used to determine the minimum number of measurements needed, Finally,
knowing the error stundard deviation of the estimate and the number of
measurements, the equation can be used to determine the standard devia-
tion of source error, a tool for identification,

2.  Analysis for Usual Algorithm

Recall Equations (59) and (65), and define

e=ct , (101)
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Q 1s & 4 X 4 matrix whose ij-element will be denoted by 9 3 Adopting
an approach of derivation similar to that for the new algorithm, the
expression of normalized error variances for estimates of Ay 1 =1~4,
can be obtained as
2
g™y s L=l~4 (102)
Similarly, the normalized standard deviation expression is given by

“i"/qii s 1=1~4 (103)
In this case, iy depends only on N, the number of measurements, but not

on the correlation parameter,

3. Comparison

For a given measurement condition the accuracy of estimates
produced by new and usual algorithms can be compared by comparing their
standard deviations, Direct comparison of Equation (100) and Equation
(103) in their literal forms is difficult, A numerical example will be
used to demonstrate the superiority of new algorithm,

Example 5

Consider the same platform alignment problem of Example 4, Figures
8 and 9 show plots of normalized standard deviations as functions of N,
the number of measurement. Axes of the plots are in log=-scale,

For N = 1250, the new algorithm gives

Yo =g = 0.24 X 1077

I
(104)
- 2
- 0,26 ¥ 10713

Int T Cint
Do Pro

while the usual algorithm gives

o ® = 0415 % 107

2

-1
nt 'n' 30094:(10
o ko
Comparing Equation (104) to Equation (105), the superiority of new
algorithm is evident,
Appendix D contains the computer program used for providing plotting
data for Figures 8 and 9,
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Section IX. RECOMMENDED FURTHER STUDY

There are several problems which deserve further study, Solution
to these problems will allow a truly optimum implementation of the IMU
self-alignment systems,

Statistical theory shows tha® more accurate estimates are obtained
with larger N, the number of measurements, However, computer error
analysis shows that larger N results in more computer error because
more computation is involved, It is desirable to choose an N such that
the total error is at its minimum, A method for making such a choice
is yet to be developed,

Even though the new least square algoritim is less sensitive to
computation errors as compared to the usual algorithm, it is still
desirable to keep computation errors as small as possible, expecially
those occurring during matrix inversion. Notice that the G matrix of
Equation (77) is symmetric and has four zero elements, This special
form may allow the development of a matrix inversion subroutine which
is more efficient in computation accuracy and computation time,

The new algorithm reported here is given in the form of batch
process, This algorithm can be modified to become a sequential process
or a hybrid process which is a semi-batch-semi-sequential process.

It is desirable to verify the analytically predicted superiority
of the new least square algorithm for platform alignment by a precision
hardware TMU which can be calibrated for experimental comparison,

The analytic results obtained from this study provide insights
for coarse alignment which is required prior to the fine alignment,
The coarse alignment can alsc be performed automatically and rapidly
with the aid of the computer already available for fine alignment,

It will be interesting to explore the possibility of a combined coarse
and fine aiignment using the same equipment and giving a best overall
alignment result,
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Section X. CONCLUSIONS

An original contribution of this study 1s the development and
analysis of a new least square regression algorithm specially for the
self-alignment of IMU systems, It was shown experimentally, as well
as analytically, that this new algorithm is superior to the usual
algorithm {n accuracy and in sensitivity,

Although the new algorithm was originally intended for the selfe
alignment of a gimbaled platform, it can be used for the alignment of
a strapdown platform as well, with some minor modifications., It can
also be used for an IMU consisting of electro~optical sensors, because
the underlying kinematic principle is similar,

Other results of this study include thorough derivation for drift
equations, misalignment equations, and the gyrocompassing equation.
Several self-aligmment concepts were reviewed and discussed using the
analytic foundation developed, Five examples were developed to help
in confirming the theoretical prediction.

Several areas deserving further investigation were recommended,
The solution to these areas will allow a truly optimum implementation

of MU self-alignment systems,
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Appendix A. COMPUTER PROGRAMS FOR EXAMPL.€ 1
(IN BASIC)

READ C2,C3,C4,C5,C6

DATA 38B5,3025,25333,220825.,1.97840E+06_
LET Ql1=C2

LET Q2=C3+C4

LET Q3=C4+2x(5+C6

LET D=Q1=%Q3-02x%Q2

LET M1=Q3/D

LET ==-Q2/D

LET M3I=M2
LET M4=Q1/D

DIM V(ig1

FOR I=] TO 19

READ V(11

PRINT “V(*I*)="y(l]l

NEXT 1

DATA 6+724,31.6288,82.623,178.334,318.864
DATA 528.414,811.526,1185.085,1656.35,2240.64
LET X1=0

LET X2=0

FOR J=1 TO 10

LET X1=J*V{J1+X1

LET X2=JxJx(l+J)*VEJI+X2

NEXT J

LET A=M1x*X!+!13=X2

LET B=M3%X1+M4xX2

PRINT **A="A,"3="3

PRINT "“TRUE VALUES ARE: A=4 B=2 Cz=B=2"
END

i S i RN




195
110
140
150
160
: 170
180
190
200
210
220
300
395
310
320
: 330
‘ 348
356
360
4090
&85
486
407
419
420
438
440
450
509
510

S50
6ae

10 REZAD
20 DATA

REM
LEs
LET
LET
LET
LET
LET
LET
LET

LET.

LET
REM
DIM
FOR

«2,C3,C4,C5,C6

385,3023,23333,220623 +,1.9784AE286
COMPUTATION OF X! TO K9

D=(2%(C4*C6-C5%C5)-CI*(C3*C6-C4*C5)+C4+(CI*CS5S-C4%C4)

Kl1=¢Cu4*xC6-C5%C5) /D
K2a(C4*C5~C3%C6)/D
K3=¢C3*C5-C4»C4)/D
K4=K2 .
KS=(C2%C6-C4%C4)/D
K6=2(C3*C4~-C2%CS)/D
K7=K3

K8=K6
K9=¢(C2*%C4~C3*C3)/D
READ IN OBSERVATIONS
viinl

i=1 TO 10

READ V(1]

PRINT *V( I*)="V(1]
NEXT 1

DATA 6¢724,31.682,82.622-'78.334,318.864
DATA 528.414,811.506,1185.85,1656.35,2240.64
WITH PRECOMPUTED CONSTANTS, DATA PROCESSING BEGINS HERE.

REM
LET
LET
LET
FOR
LET
LET
LET

X1=0

X2=0

X3=2

J=} TO 1o
X1=JxVlJI+X1
X2=JxJ*xVIJIeX2
A3=JxJxJ2VIJI+X3

NEXT J

LET
LET
LET

A=K]l#X1 +K2%X2+K3*X3
B=K4x%X] +KS%X2 +K6%X3
C=KT7%X1 +KB2X2+K9*X3

PRINT “A=x"A,'"Ba"B,"(a%C
PRINT “TRUE VALUES ARE: A=4 B=2

END

48
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19
12
13
i4
15
16
16
20
30
49
62
70
72
80
93
1009
128
130
132
209
2108
240
250
260
274

T f,

"

AV V)
Gow o
&

[N
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491

432
433
494
435
446
462
470
5Ce
565
506
31¢
529

S50

FERN AV

Appendix B. COMPUTEIi PROGHRAMS FOR EXAMPLES 2 AND 3
(IN BASIC)

PRINT “LEAST 5w+ ALGO. USING PARAMETEZR CORIELATION'
LET C2=3835
LET C3=3025
27T €4=25333
LiIT C5=22¥825.
LET C6=1.97840E+96
PRINT
DIM VIId]
FOR I=1 TO 182
}zaD VI1]
NEXT I
DATA 5.7245,23¢682,55¢623,114.334,193.864
DATA 312.414,46064506,673048,927.347,1240.64
DIrf Ul1021]
FOR J=1 TO 18
READ UCJ]
NEAT J
DATA 4.782,25.281,7C+7423,155:6:7.,290.642
DATA 485.989,756.3645,1112.C4,1568.82,2130.56
DIM VI4,11
LET %E€1,131=WE2,13=V(3,11=W(4,11=0
FOR K=1 TO 1@
LET WE1,10=Wl1,1)+KxVIK]
LET VE2,131=Wwl2,1 J+K«Kx(VIKI+KxULKD)
LET V3,13=Ww 3,1 1+K*J(K]
LET Wl4,11=%04,1 1+K*K*x(JLKI+KxVIK])
NEAT W
J1 dlasral
LET GL1,13=6(3,3131=C2
LET Gl1,21=G(2,11=G03,41=Gl4,33)=C3
L=V GL1,33=4503,11=2
LET GC1,431=GC04,11=({2,31=G(3,2)=C4
LET G(2,21=GC4,41=C4+C¢
LET G(2,41=004,21=2%xC5
DIV H{4,4]
PinaT H=INV(G)
DIM XU4,1
PRINT "X VECTOA"™
2UNT
AT N=HxW
HAT  PRILT O
PRINT "TIRUE YALUES: Xl=4 #2=2 X3=3 X4=i"
END

49

S AT A BRI D LM M .

it

i

o al
v e Lty

e AT A e 'L ] B nd § oM

T I

P R AT

A W gL+

3

b Vo Lt )

I e Sttt

Dbl b



TN R v

i

T b o

10
12
20
30
48
60
790
72

990
100
120
138
132
200
2106
229
¢
249
250
272
280
312
320
352
362
379
3890
390
409
430
440
450
460
472
48¢
490
589
51¢
520
530
342
558
560
570
580
590
6930

PRINT “THS USUAL LEAST
PRINT >3

DIM VCig]

FOR I=1 TO 1¢

READ V(13

NEXT 1

DATA 5.724,23.682,35.62 .
DATA 312.414,4684.566, 3l paas334,
DIM ULld)]
FOR J=1 TO 10
READ ULJ)
NEXT J

DATA 44782,254201570.743,155¢663,293.642

DATA 485.989,756.364,1112.84,15686.82,2133.56
READ C2,C3,C4,C5,C6

DATA 385,3025,25333,220825.,1.9784BE+26

LET J=C2%(T4*C6-C5%CS5)=C3%(C3*C6~C4%L5)+C4*(CI*CS-CaxC4)
LET Kl=(C4*C6-C5%C5)/D

LET K2=K4=(C4x%xC5-C3*C6)/D

LET X3=K7=(C3%CS5=-C4%C4)/D

LET i{5=¢C2xC6-C4%xC4)/D

LET K6=K8=(C3*%C4-C2%(C5)/D

LET K9=(C24%C4-C3%C3)/D

LET X1=¥X2=13=0

FOR 1=1 TO 1¢

LET X1=X1+1%V(1]

LET R2=X2+1Ix1%V(1l]

LET X3=X3+IxIxIxV(I]

NEXT 1

LET Y1=Y2=Y3=0

FOR J=] TO 1€

LET Yi=Yl+JxUlJ)

LET Y2=Y2+uxd*UlJ]

LET VY3=V3+J*xJxJxUlJ]

NEXT J

LET A=Kl#X]1+K2%X2+K3*X3

LET 3=sxK4%xX] +K5*X2+K{6%xX3

LET C=iT7xih]l+nE»xA2+K9%X3

LET E=X1xY1+K2xY2+K3IxY3

LET F=sK4xY]1+£5%Y2+K6%xY3

LET G=K7xV1+X8xY2+K9*Y3

ALGO."

193.864
673.048,927.347,1243.64
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Appendix C. COMPUTER PROGRAMS FOR EXAMPLE 3
(IN FORTRAN)

PROGRAM MATN(INPUT QUTPHT (TAPES=INPUT + TAPFOOUTFUT?
Coosos| EAST SQUARF ALGORITHM 1ISTNG PARAMETFR CORRFLATION

INTEGER DELPMs DELPE

NDIMENSION £¢S)e G(Ge4)s NELPN(1250) s NFLPE(1250)e VN(1250)

1 VF{1P503 e« W{O)s X(4)s VNOFF(1250)e VEOFF(1250) ¢ H(494)
DOURLE PRECISION Go He We X

CousauSETYING UP C(2) TO C(6) ( C{(s) IS NOTY USED, )

DO ? 1=246
C(I) = 0,0
DO 4 K=141750
FK=K

4 Cl1)=C(1)sFKun]

2 CONTINUE
WRITE(ReH) (1o C(I)s I=2ea)

6 FORMAT (1H1/77/7 S(1OX#Cei1#=%£20,12/))

48 2eFESTAR|LISHING G-MATRIX
FARTH RATE = 7,29211F=-05 RADIAN/SFCOND
LATTTUNF = 34,6425 NFGREE",
SAMPLIMG PERINDe YAl = 0,192 SECOND
U = =(7=COMPONENT OF EARTH RATE)*TAU/3
= =(=7.7¢211E~05 * SIN34,6425) * 0.192 /7 3
= 0.2652947IRPE~0S
Ui=0,76529473R2E~0S
G{l1e11=C(P)
G(142)=C(3)
G(l'w’ -'-‘000
G{le6)=UC(4)
G{2¢1)=6(1+2)
G(2+2)Y=Cl4)-U*C(&)
G(2e3) =(=U) & (4)
((24)=0,0
6{(3¢11=0,0
G(3+42)=G(2+7)
G{3)=C(?)
G 3e¢6)=C(3)
Glael)=G(144)
G(442)=0,0
G(4+3)=6(3¢0)
5 (4e4)=2Cl6) +UnC(R)
WRITF - 83 ((G(T: 1 e J=Tea)e I=1e4)
R FORPMAT (1HOsT7Xe TG=-MATRIXB 274X 04FPa1G/0X 0aEPL 0/
1 GXGLF 24,1676 X04F P4 ,14)

OO ONHO

(reuaaGFYTING G = G=-TNVFRSE  (IN=~PLACE STORAGE)
CALl MTXINY(Gou)
WEITE(Re9) ((GTed)e J31eb)e [=144)
9 FORMAT (1HO/7Xe#G=TNVERSF#/4X44F 24, 14/4Ke4E24,14/
1 LXeuFP6,10674%04F 24 4 14)
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CreasnoanasfFOR DOFRUGGING USE ONLY

Cc TO CHECK THE INVERSF OF THE INVERSE OF 6
DO RO I=l+4
DO R1 U=lae0
81 H(leJ)=R(1e)
80 CONTINUF

CALL !t TXINV(He4)
WRITE(6e82) ((H{Io 1)e J=1e6)s I=)104)
R2 FORMAT (1HO/7X e #G=INVFRSENS INVERSF#/646(uXe0E24,147))
CosnunsasatDERUGHIMNG INFORMATTION ENDS

CousseREAN IN MEASURED DATA
REAN(S+10) (NELPN(1)s DFLPE{I)e I=1+1260)
10 FOPMAT (10(214)) _
WRITE (6e12) (DELPN(I)s T=1+1258)
12 FORMAT (1H1,10Xs#DELPN{I} s I=} YO 1250%://63(3K+2016/))
WRITE(6913) (DELPE(I)e T=1¢i250)
13 FORMAT (1H1410Xe#NEILPE(I)e T=1 TO 1250%4//63{8X+2016/))

CoasdatCOMPUTING VMNOFF{TY AND VEOFF (1) (IN NUMMRER OF PULSES)
VNOFF (1) =DELPN(1) +55
VEOFF (1)=DFLPE (L) +4
DO 40 1=2.172%0
AUXM = DFELPN(T) « &S
AUXE = DFLPF (I} « 40
VNOFF {T)=VNOFF {I=1) + 8UXNM
40 VEOFF(I)=VYEOFF({1-13 +AUXF
WRITE(ARsa?)
42 FORMAT (1Ml olOXoRIR RXenVNOFF ()R ZXe2VEOFF (Y1) %y
WRITE(6e80) (PSo]UNOFF (P26#[)e VEOFF (2521} s 1=1450)
44 FORMAT (4% e1B42EPGW15)

CHuaeaOBTAINING UNCI} AND YE(TY RY COORDRIANTF TRANSFORMATION
C {IN NUMRER OF PLLSFS)
C HATH < ]1S0 DFGRFES = 2.A179%3878 RANTANS
RATH=? ,£17993IH8TR
SR=SIN(RATH}
CR=CHS (RATH;
NO 14 1=1+1750
VN(T) = YNOFF(T)*fR « YEOFF(])¢SR
16 VE(T) = VEOFFL(I)aCH o VANOFF{I)#5H
WRITF (6+30)
30 FORPMAT (IH1el10A4#T 240X YN{T)RelBXs#VF(])*)
WRITE(Rs18) (2S5%Te VN(ZRET)e VF{2R®T)e T:2ie50)
1S5 FORMAYT (4Y4T1ReP2FPUL,14)

CouanttaCOMPHTING W~VECTOR
W(li=0.0

Wi2)=0.0

W{3)=0,.8

W{4)=0,.0

DO 16 K=141950




FK=K
Wil) = W(l) o FK®VN(K)
W(2) = W(P) & Frerka(VN(K)-USFK#YE(K))
Wi(3) = W(3) + FKaVE(K)
16 W(4) = Wla) + FReFK® (VE (K) +UJFKBVYN(K))

WPITE(6917) (Lo W(I)e I=1e4)
17 FORMAT (1H1/77 4 (14X %Wa]14#=#E204127))

Cres#eCOMPHTING X=-VECTOR

NO 18 I=1e4
Y{11=0.0
NGy 20 J=144

20 X(I) = X(I) + G(leJ)®W (D)

18 CONTINUE
WRITE(Re??2) (Is X(I)e I=led)

P2 FORMAT (1HO0// 4(14Xy3X#T7)12=%E20,127))

CenaaaCOMPUTING PLATFORM PARAMFTERS
o N-AXIS SCALE FACTOD SFK=100441,
C E-AXIS SCALFE FACTOR SFE=101712.
SFN=100441,
s SFE=101717.
3 TAU=0,19?
= A=]1,/TAY
=22, /TAURED
ZETANO=A®X(3) /SFN
7ETAEO=(=-A)2X (1) /SFE
DRFTHO=4%X (4) /SFN
DRFTEO=(=-R)#X (2) /SFE
WRITE(ReP4) 7ETANN, ZETAFNe CRFTNOe NRFTEOD
264 FORMAT (1HN//7)4X%7ETANN=«E20,12% PRANTAN®//

1 14X o27ETAEN=2F20,17¢ QADTAN®//
1 14X 2NDRFTNN=#E20,12% RADTAN/SEC®//
1 14X &#DRFTEN=2E20,17% RADIAN/SEC#)
CreaatEND OF THE FSTIMATION PPNGRAWM
END
: 53
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SUBROUTINE MTXINV(GeM)
C
Coouad0ON INPUT G IS Ge ON OUTOUT G IS THE INVERSE OF G
DIMENSION Gl4+4)
DOURLE PRECISION G
N0 140 K=1¢M
IF {G(X9eK)) 100 160+ 10
10 GZ2Z2=107G(Ko¥K)
DO 90 I=)eMm
IF (1=-K) 20+« 904 60
20 CONST=G(1.K)2G27
DO S0 J=1M
IF (J=K) 30+ S50, 40
30 G(IeJd)=G(Te))+CONSTRG(JK)
GO TO SO
40 G(I1eJ)=G(1eJ)~CONSTH#G(K,.S)
50 CONTINUE
GO 70 90
60 CONST=G(KeI)®#G22Z
N0 R0 J=T¢M
IF (J=K) 1704 80+ 70
70 G(Ie N =G(TeJ)=CONSTRG (Ko J)
80 COMTYINUE
90 CONTINUE
DO 110 J=KeM
IF(x=J) 100+ 110+ 180
100 GI(Ke ) =G(KeJI®GZ7
110 CONTINUE
NO 130 I=1.K
IF (K=1) 190. 130+ 120
120 G(J«K)=(=G(1eK})®*G77
130 COMTINUE
G(KQK)=G72
140 COMTINIIE
DO 150 [=2M
Ji=1-1
NO 150 J=leN1
150 C(leV=G(Je )
RETHRPM
160 WRITE (/+210)
GO T0O 200
170 WRITE (Ae220)
GO Th 200
1R0 wWITE(Re?230)
GO T0 200
190 wRITFE (Fe24N)
200 CONTINUE
210 FORMAT (4X+#ZFR0O NIAGONAL FLEMENT, RAD NATA#)
2720 FORMAT (4Y8EPROR IN INDFXING TN DOING DO RO#)
230 FORMAT (4X<#EPROR IN INDFXTNMG IN DOING DN 110%)
260 FORMAT (LYo #ERROR IN INDEXING IN DOING NN 130%)
END
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PROGRAM MAIN(INPUTOUTPUT TAPES=INPUT + TAPE6=OUTPUT)
C THE USUAL LEAST SNUARE ALGORITHM
C 3-TERM 3IRD ORDER POLYNOMIAL

INTEGER DELPMe DFELPE

NIMENSTON DELPN(1250)s NFLPE(1750) ¢ VN(1250)s VE(1250),
1 VNNFF (1250)s VEOFF(1250) ¢ Q(3+3)

DOURLE PRECISION 0

CannneSETTING P €2 YO0 CA

€C2=0,0
£3=0.0
Ca=0,0
C520,0
C6=0,0
NO 2 K=141250
FK=K
C2=C2+FKua?
C3=C3+FKoa]
Ca=ClLeFKe®Y
CS=CS5+FKueg

? C6=CheFKBGA
WRITE(Re&) C29 Cle Che (56 C6

4 FORMAT (1H1//7710Xe%#C2=#F20,12710Xe®*Ci=4F20,.12/
1 10X s #C4s%FP(),12/710Xe#CS=4F20,12/10X¢2CH=*EPN,12)

CesoeeCOMPUTING D AND 01 TO 09
0(141)=C?
0(142)=C3
0(1+3)=Ct
0(241)=C3
0(2+2)2C8
N(2e3)=CS
0(341)=C
0(342) =8
0(343)=Ch
CALL SYMINV(0s3) .
WRITF (Aeh) ((QAUTedds J=iee Iz1e3)
A FORMAT (1HO/T7X s 30=INVERSF#/3(4X¢3E244147))

CeensaPEAD IN MFASHRED NATA
READ(S<10) (NELPN(TI)e DELPE(I)s 1=141250)
10 FOPMAT(10(214))
WRITF (6e12) (NELPN(i)e T=101250)
17 FORMAT (1H1410X+®0FLPN(I)e T=1 TO 12509.//763(AX+2016/))
WRITE(Ae13) (DELPE(I)s I=141250)
13 FORMAT (1HI410Xe#DFLPE(IYe I=1 TO 1250#4//63(8Xe2016/))

CevaanCOMPUTING VMOFF (I) AND VFOFF (I} (IN NUMBER OF PULSES)
VNOFF (1) =NE1L.PN(1)+55,0
VEQFF (1}=NFLPE(1)+40,.0
NC 40 I1=241250
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VNOFF (1) =VNOFF (1=1) +DELPN (1) 55,0
40 VEOFF (1)=VEOFF (1=1) +NDELPF (1) ¢40.0

WRITF (6442)
42 FOPMAY (lchlOXo’l'o8X00VN0FF(!)’olZXo’VEOFF(I)')

WRITE (hotts) (25#1+VNOFF (2511 VEOFF (25#1) 1=1+50)
44 FORMAT (4Xo¢18¢2E24414)

ceseaeORTAINING VN(I) AND VE(T) RY CONRDIANTE TRANSFORMATION
C (IN NUMRER OF PULSFS)
C RATH = 150 DEGRFES = 2017993878 RADIANS
BATH=2,61799187R
SE=SIN(RATH)
CB=COS(BATH)
NO 14 I=1+1750
VN(T) = VNOFF(1)®CR ~ VEOFF (1)#SR
14 VE(T) = VEOFF(I)#CR « VNOFF (1) #SB
WRITE (6470)
30 FORMAT (lHlolOXo’I’olOXo¢VN(I)OolSXo'VF(I)')
WRITF (6+15) (25#1+¢ VN(2R®1)e VF(25¢1)s 1=1450)
15 FORMAT (&X+1Re2E20L,14)
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c COMPUTING Yle Y2e Y3s Zis Z2¢ 23

Y120,0
¥220,0
Y3=0.0
00 17 1=1+1250
Fl=1
Y1=Y1+FI#UN(T)
Y2=YP+FIoF [oYN(T)

17 Y3zYaAeFTeFI#rIavN(T)
7l=0.°
72=0,0
7320,0
N0 18 J=1+1250
FJi=J
Z1=Z13FJ*VF L)
72=72+F J*F J*VE ()

1R 73273eF JOF JRFJOVF ()

TR A W

i

CoseraCOMPUTING X1 TO X6 _
X120(1 s F)#Y1+0(142) #Y2¢n (1 +3) #Y2
XP=0(241)#Y140(242) #Y24N (243) #Y3
X3=0(141)971+0(142) #2240 (143) 973
X4=0(P+1)9Z1+0(2+21 92240 (243) 473
WRITF(6920) X1eX2eX39X6

20 FORMAT (1H1///14Xe#X129F20,12/16X49X2=#E20,12/

i

o s
f

Il kil

1 14X ¢ #XI=9620,12/16K ¢ #X6=#E20,12)
1 CesssaCOMPUTING PLATFORM PARAMETERS

3 ¢ M-AX1S SCALE FACTOR SFN=100441.

4 ¢ F-AX1S SCALE FACTOR SFE=101712.

3 SFN=100441

: ! SFE=101717

2 f TAU=0.192

3 56
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A=1,/TAU
R=2,/TAUS#?2
ZETANO=A#X3/SFN
= ZETAEO=(=A) #X1/SFE

B DRFTNO=B#X4 /SFN
= . DRFTEO= (=R) #X2/SFE :
: WRITE(he?4) 7ETANOs ZETAFNs DRFTNOs DRFTEO :

24 FORMAT (1HO//14X«#2ETANN=#E20,12% RADIAN®//

4 1 14X #ZETAEN=2E20,12% RADTAN®//
> 1 14X #ORFTNO=#E20,12¢ RADIAN/SEC#//
- 1 14X + #DRFTEN=%E20,12% RADIAN/SECH*) 1

CanausEND OF THF FORTRAN PROGRAM
END
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SUBROUTINE SYMINV(GeM)

CenasaDN INPUT G IS Ge ON QUTPUT G IS THE INVERSE OF 6
DIMENSION G(3+3)
DOURLE PRECISION 6
DO 140 K=1eM
IF (G(KeK)) 10- 160 10
10 32Z=1.0/G(K4K)
NO 90 I=]1.M
IF (1=K) 20+ 90+ 60
20 CONST=G(14+K)%G22
DO S0 JU=T«M
IF (J=K) 30y S0« 40
30 G(IeJ)=G(TeJ) *CONSTRG(JoK)
GO 70 S0
40 G(leJ)=G(T1+J)=CONSTHG(K,J)
S50 CONTINUE
GO TO 99
60 CONST=G(K+1)#G22
00 80 J=IM
IF (J=K) 170+ ROs 70
70 G(IeJ)=G(I9J)~CONST#G(KeJ)
80 CONTINUE
90 CONTINUE
00 110 J=K¢M
IF(k=-J) 100+ 110+ 180
100 G(KeJ)=G(KoJ)*G22
110 CONTVINUE
D0 130 I=1l.K
1IF (K=I) 190+ 130« 120
120 G{I+K)=(=G(IsK))®GZ2
130 CONTINUE
G(KK)=G77
140 CONTINUE
NO 150 I=2M
Ji=1=-1
DO 150 J=1l M1
150 G le N =G{JeT])
RETURN
160 WRITE(6+210)
GO TO 200
170 WRITE (R47220)
GO T0 200
180 WRITE(6+230)
GO T0 200
190 WRITE(R4240)
200 CONTINUE
210 FORMAT (4X+#7ZFRO DIAGNNAL FELEMENT, BAD NATA®)
220 FORMAT (4X4#FEPROP IN INDFYING IM DNING DO 80%)
230 FORMAT(4X#EDROR IN TMDFYING IN DOING NO 110%)
240 FORMAT(4Xo#ERROR IN INDFXING IN DOING DO 130%)
END
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Appendix D. COMPUTER PROGRAMS FOR EXAMPLE 5
(IN FORTRAN)

PROGRAM MAIN(INPUTOUTPUTTAPES=INPUT + TAPE6SOUTPUT)

CosoesTARLE OF NORMALIZED STANNARD NEVIATIONS FOR THE USUAL

c

30

AND THE NEW LEAST SQUARE ESTIMATION ALGORITHMS

NIMENSTON A(4e4)e Q11(30)e Q22(30)¢ 033(30),
1 G(aeb)s H11(30)s H22(30)e H3I(I0) s HLL(3D)

1120, PAR294TIN2E-05
C?2=0.0

C3=0,0

Ca=0,0

CS5=0,0

Cée=0,0

NG 20 N=le30
M= (N=-1)#100+1
I=N#100

NO 30 JaMeT
C2=C2+J282,0
C3=C3+J%43,0
Caz=Ca+ )ae4,0
La=CH+ juaG 0
Co=CAR+ JRBAR D

A(le1)=CR?
A(le2)=CH
A(le3) .Co
A(2¢1)=C1
A(247)=Co
A(2+3)=C8
A(3.1)=Ca
A{3+?)=C5S
A(3e3)=Ch
CALL MTXINV(&s3)
D11(NY=A(141)
022(N)=A(?+?)
N33(N)=A(3?)

6G(l+1)=C?
G(le”2)=C3
G(1¢3)=0,0
G(1e4)zU*Cs
G(241)=G(1+7)
G(2e2)=Ca~-11%C6
G(Pe3)=(=lI) #Ch
((2¢6)=0,0
G(3e1)=0.0
G(342)=6(247)
G{3+3)=C?
G(344)=CR
Glee1)=G(]44)
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G(4e2)=0,0
G(4e3)=G(Red)
G4 e0)=CiasljtCh
CALL. MTXINV(Re4)
HIT(MY=G(1la1)
HP2(N)=G(2+7)
HIT(N) =G (V)

20 H44 (N)=Gl4e4)

wITF (~ea0)

60 FORMAT(IHIZI0Xe#N/100%e10% o201 ) (N)#¢24Xo#H11 (N) #e25Xe#HIT(N) #)
MRITE(ReSNY (e NTITIN)e HIL(N)e HIZ(N) o N=1430)

S0 FOFVMAT(]INY TS e l0XeCPN0el”Pe10XeFPNe12410Yec20.12)

WRITF (Reh )

A0 FOSHMAT(IH1/10XeeN/100%e 10X ¢ #6022 (N) #4284 X o #HP? (N) #425X e #HG4 (N) #)
WRITF (Re70) (e N22(N)e HPP2(N) e H4L(N) e N=1430)

7 FOPMAT (10X alSel0XeFP0el7 e l10XeFPN,12¢10%aFE20412)

WOITF (Ae?D)

RO FORMAT (IH]1710Xe#M/1N0*e 19X« #G3(N)#)
WRITF (ReOQf) (Mo NIA(N) e M=]1e30)

Q0 FOOMAT(INYXeTSel0XeFPN412)
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SYHPOUTINE MTXTIMV (GoM)

CooossOn [MPIT 6 1S Ge ON OUTOUT G IS THF T'IVERSE OF G

10

20

0

40
S0

61

70
R0
99

100
119

120
130

140

180
1A0
170
190

190
200
210
220
230
240

NINMFMSTOM {4e4)

DO 140 K=)eM

IF (G(k4K))Y 10¢ 1606 10
GZ7=1.0/G (K 4K)

NO Q0 I=1eM

IF (I=K) 2Ny 90e KO
CONST=G (1K) #G27

NO R0 JsTM

IF (J=K) 30« 500 49

6G(Te 1)=6(1e)) *CONSTHG (JoK)
GO T S0
G(1eJ)=6{Te ) =CONST#G (Ko f)
COMT INUIF

GO T QQ

COMST=G(KeT) #6227

D0 0 =]

IF (J=x) 170« AQ0e 70
(Lo} =G (Te ) =CONSTRG (Ko D)
COMT INUE

CONTINUE

NO 110 JsKeM

IF{x=J) 100s 110« 180
G(KeJ)=G(KeJ)RGZ7
CONTINUE

NO 130 I=1l.K

IF (X=I) 190« 1300 129

G Il +K)=(=G(T1eK))®G77

CONT INMUE

G KKY=(7Z

CONTIMIE

NO 180 1=2M

Ji=I-1

N0 150 J=1J1
G(le«J)=G(JeT)

RETURN

WRITE(Ae?10)

60 70 200

WRITF(ReP2N)

GO TOHO 200

WRITF (Ae?2730)

GO TO 200

R ITF (he?40)

CONTINUE

FURMAT (4Xe#7FRNO NTAGNNAL FLENFNT, RAD NATA®)
FORMAT (4X«8FRROP IN TNDEXING IN DOING NO 80%#)
FORPMAT (GX<#FEQRNR TN INUFXING IN DOING DD 110#)
FORMAT (4X e #FPROR TN INDFXTHNG IN DOING DO 130+)
END
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